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Final report for AFOSR grant FA9550-12-1-0117

Liliana Borcea

I. Research

We report in sections 1-4 the following published and submitted research results: (1) Quantification of net

scattering effects in waveguides with random boundaries and filled with random media. (2) Imaging in

random waveguides. (3) Pulse propagation in time dependent random media. (4) Synthetic Aperture Radar

imaging with motion estimation. Then we mention in section 5 some current work.

1 Scattering effects in random waveguides

Random waveguides are mathematical models of waveguides with rough boundaries, filled with heterogeneous

media. The microscale features (fluctuations of the boundaries and small inhomogeneities in the medium)

cannot be known or determined in detail, they are necessarily uncertain. We study the propagation of this

uncertainty to the wave field by placing the problem in a stochastic framework and analyzing the solution of

the acoustic wave equation and Maxwell’s equations in waveguides with random media and boundaries. The

analysis is asymptotic in the limit ε→ 0, where ε is the scale of the amplitude of the random perturbations.

It uses the diffusion limit theorem to obtain a mathematically rigorous characterization of the wave field

at long ranges properly scaled by ε to see net cumulative scattering effects. The results describe in detail

the randomization of the wave field, quantify the statistical decorrelation of its components and describe

the transport of energy in the waveguide. They are the foundation of our new theory of robust imaging in

random waveguides (section 2).

1.1 Two dimensional acoustic waveguides

We illustrate in Figure 1 the schematic of a two dimensional waveguide with boundaries

X
B

(z) = εµ
B

(z
`

)
, X

T
(z) = X

[
1 + εµ

T

(z
`

)]
, (1)

where µ
B

and µ
T

are random processes with arguments scaled by the correlation length ` and X is the ideal

waveguide depth. The waveguide is filled with a random medium with wave speed c(~x) satisfying

1

c2(~x)
=

1

c2o

[
1 + ε ν

(
~x

`

)]
, ~x = (x, z), (2)

with ν another mean zero random process. The results in [3, 4] characterize the statistics of the wave field

p(t, ~x), the solution of the wave equation in the waveguide, with excitation given by a source with density ρ(~x)

compactly supported around range z = 0, emitting a pulse f(t) with carrier frequency ωo and bandwidth B.

The analysis is under the assumption that the random processes ν, µ
B

and µ
T

are statistically independent,

stationary in range and with z integrable autocorrelations Rν , R
B

and R
T

.
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Figure 1: Schematic of a two dimensional waveguide. The waves emitted by a source are trapped by
boundaries at cross-range x = X

B
(z) and x = X

T
(z) and propagate in the range direction z toward an array

of sensors. The boundaries have small random fluctuations with amplitude scaled by ε and the waveguide is
filled with a random medium.

To summarize the results, let us write the mode decomposition of the wave

p(t, ~x) =

∫ ∞
−∞

dω

2πB
f̂

(
ω − ωo
B

)
e−iωt

N(ω)∑
j=1

[
Aj(ω, z)φj(x)eiβj(ω)z +Bj(ω, z)φj(x)e−iβj(ω)z

]
+ evanescent

(3)

where the hat denotes Fourier transform. The modes φj(x)e±iβj(ω)z−iωt are special time harmonic solutions

of the wave equation in ideal waveguides, and represent forward and backward going waves. They are defined

by the eigenfunctions φj(x) of the operator ∂2
x + k2, for whatever boundary conditions we have at x = 0

and X, where k = ω/co. The mode wavenumbers βj equal the square root of the eigenvalues, which are

non-negative for j = 1, . . . , N(ω), with integer N(ω) ≈ bkX/πc. The scattering effects are in the forward

and backward mode amplitudes Aj and Bj , which are random fields. We can write them as

Aj(ω, z) =

∫
d~x′ ρ(~x′)aj(ω, z, ~x

′)e−iβj(ω)z′ , Bj(ω, z) =

∫
d~x′ ρ(~x′)bj(ω, z, ~x

′)eiβj(ω)z′ , (4)

in terms of the amplitudes aj and bj of the modal expansion of the Green’s function G(t, ~x, ~x′).

We explain in [3, 4] that if the waves do not travel too far, which means explicitly that z � ε−2λo, where

λo is the carrier wavelength, then

aj(ω, z, ~x
′) ≈ aj,o(ω, x′) :=

φj(x
′)

2iβj(ω)
, bj(ω, z, ~x

′) ≈ 0, 1 ≤ j ≤ N(ω). (5)

The random fluctuations in the waveguide are negligible at such ranges and the mode amplitudes (4) are

deterministic and proportional to the Fourier coefficients of the source density

Aj(ω, z) ≈
1

2iβj(ω)

∫ X

0

dxφj(x
′)

∫ ∞
−∞

ρ(x′, z′)e−iβj(ω)z′ =
ρ̂j(βj(ω))

2iβj(ω)
, Bj(ω, z) ≈ 0. (6)

The bar denotes complex conjugate and we use the term Fourier coefficients because φj(x) are normalized

trigonometric functions.

The random fluctuations cause net scattering effects at ranges z = ε−2Z, with Z & λo. There we have(
a(ω, z = ε−2Z,~x′)
b(ω, z = ε−2Z,~x′)

)
= Pε(ω,Z, ~x′)

(
ao(ω, x

′)
bo(ω, x

′)

)
, (7)

where a and b are the vectors with N components aj and bj , and Pε is the 2N × 2N propagator matrix.

It models the mode mixing induced by scattering and is shown in [3, 4] that as ε → 0 it converges1 in

1This result is the extension to random boundaries of the analysis of Kohler and Papanicolaou [18] and of Dozier and Tappert
[15], which is for waveguides filled with random media but flat boundaries.
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distribution to a random Markov diffusion P whose generator can be computed explicitly in terms of the

autocorrelations Rν , R
B

and R
T

of the fluctuations in the waveguide. The significance of this result is

that we can approximate explicitly all the statistical moments of the wavefield that we need. For imaging

applications we study in particular the first and second moments. The first moment gives the coherent wave,

the expectation of (3). The second moments describe the random fluctuations of (3) and the statistical

decorrelation of its components over frequencies and modes. They also tell us how energy is transported by

the modes in the waveguide.

It turns out that in regimes with ` & λo and for smooth enough in z autocorrelations Rν , R
B

and R
T

, the

backscattered waves are very weak and may be neglected. The evanescent waves interact with the forward

going waves and have some small influence on the statistics of their amplitudes. This is rigorously taken into

account in [3, 4] and the results summarized here. The coherent wave field is

E [p(t, ~x)] ≈
∫ ∞
−∞

dω

2πB
f̂

(
ω − ωo
B

)N(ω)∑
j=1

E [Aj(ω, z)]φj(x)eiβj(ω)z−iωt, z = ε−2Z, (8)

where E denotes expectation (mean) and

E [Aj(ω, z)] =

∫
d~x′ρ(~x′)E [aj(ω, z, ~x

′)] e−iβj(ω)z′ ≈ ρ̂j(βj(ω)

2iβj(ω)
e
− ε2z
Sj(ω)

+i ε−2z
Lj(ω) . (9)

The mean mode amplitudes differ from the amplitudes (6) in ideal waveguides by the decaying and oscillatory

exponential. We have a dispersion effect manifested on the range scale ε−2Lj(ω) and an attenuation on the

scale ε−2Sj(ω). Turns out that the energy of the modes E
[
|Aj |2

]
remains finite no matter how large z is.

Thus, the attenuation in (9) is a manifestation of the randomization (loss of coherence) of the modes, and

Sj(ω) is their scattering mean free path.

Both Sj and Lj are calculated explicitly in [3, 4]. For example, the scattering mean free paths are

Sj = 2

{
N∑
q=1

k4`

4βjβq

[
4(jq)2

N4

(
R̂

B
+ R̂

T

)
+ R̂νjq

]
(` (βj − βq))

}−1

, (10)

where Rνjq is the autocorrelation of the stationary process

νjq

(z
`

)
=

∫ X

0

dx ν
(x
`
,
z

`

)
φj(x)φq(x).

We display in Figure 1 the scales Sj(ωo) (blue line) and Lj(ωo) (green line) for two simplifications of equation

(10): The first is for a waveguide with flat bottom and homogeneous medium where we keep only the R̂
T

term in (10). The second is for a waveguide with flat boundaries, where we keep only the R̂νjq term. We

let R
T

be of Matérn 7-2 form, with ` = λo/
√

5 and ε = 1.3%. The autocorrelation Rν is Gaussian, with

` = λo. The waveguide has X = 20λo so N(ωo) = 40. The key point displayed in Figure 2, which turns out

to be important for imaging, is that when scattering at the boundary dominates (left plot), there is a very

strong mode dependence of the scales Sj and Lj . In particular, the first modes which travel faster in range

can go 105λo before they randomize, whereas the slow modes with index j ≈ N randomize on ranges of the

order λo. If the random medium plays the important role (right plot), then the last modes still randomize

on range scales of order λo, but there is a much weaker mode dependence of the scattering mean free paths.

Most modes randomize on almost the same range scale which is about 50λo in Figure 2.
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Figure 2: Left: random top boundary and right random medium. We display the scattering mean free paths
(blue), dispersion scales (green) and equipartition distance (red) in units of λo. The abscissa is mode index.

Because of energy conservation, it is clear that at least some of the second moments of the mode ampli-

tudes remain finite no matter how large z is. To understand this, we first determined in [3, 4] how the mode

amplitudes decorrelate. We found that

E
[
Aj(ω, z)Aj′(ω′, z)

]
≈ E [Aj(ω, z)]E [Aj′(ω′, z)], if j 6= j′ or |ω − ω′| � ε2ωo, (11)

with the right hand side decaying in z as seen from (9). The waves are correlated only for small frequency

offsets and for the same mode index,

E
[
Aj(ω, z)Aj(ω − ε2h, z)

]
≈
N(ω)∑
q=1

|ρ̂q(βj(ω))|2

4βq(ω)βj(ω)
Ŵ

(q)
j (ω, h, Z)e−iβ

′
j(ω)ε2hz, z = ε−2Z, (12)

where W
(q)
j (ω, τ, Z) is the Wigner distribution and the hat denotes its Fourier transform in τ . The Wigner

distribution describes the energy of the j−th mode at range ε−2Z in a time window of order ε−2ω−1
o centered

at τ , for an initial excitation in the q−th mode. It satisfies a linear system of transport equations, and its

Fourier transform is given by the jq entry of the matrix exponential

Ŵ
(q)
j (ω, h, Z) =

[
eihB

′Z+ΓZ
]
jq
, (13)

where B′ = diag (β′1, . . . , β
′
N ). The N ×N real valued matrix Γ models the mixing of energy by scattering.

Its off-diagonal entries are non-negative, given by

Γjq =
k4`

4βjβq

[
4(jq)2

N4

(
R̂

B
+ R̂

T

)
+ R̂νjq

]
(` (βj − βq)) , j 6= q, (14)

and its rows sum to zero Γjj = −
∑
q 6=j Γjq.

We studied extensively the properties of matrix Γ in [1], in the context of intensity based imaging of

remote sources in random waveguides. That work is a direct application of the results summarized here. It

quantifies explicitly the impediment of imaging caused by scattering at the boundaries and in the medium.

It also introduces a robust imaging methodology. We refer to section 2 for more details.

The results described here extend to leaky waveguides, analyzed by Kohler and Papanicolaou in [18] and

by Gomez in [16, 17]. From the point of view of imaging, the important difference is that there is an extra

decay in the expression (13) of the Wigner distribution, due to radiation of energy through the boundaries.

The results also extend to three dimensional waveguides with bounded cross-section and to electromagnetic

waves. The essential difference is that there are mode degeneracies which model polarization effects, and

mathematically speaking the associated amplitudes are statistically correlated (see section 1.3). Waveguides

with open cross-section in one direction are different, as we explain next.
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Figure 3: Schematic of the setup of our study of beam propagation in three dimensional waveguides. The
system of coordinates has range origin z = 0 at the source. The rigid bottom boundary y = 0 is assumed
flat and the pressure release top boundary has fluctuations around the value y = D. The cross-range x and
the range z are unbounded, i.e., (x, z) ∈ R2.

1.2 Beam propagation in random waveguides

We summarize here our results in [11], where we study wave propagation with applications to time reversal

and imaging in random waveguides with unbounded cross-section. See Figure 3 for a schematic of the setup

which is relevant for example to shallow underwater acoustics.

The analysis is in a long range, paraxial scaling asymptotic regime modeled with a small parameter

ε = λo/ro � 1. It is defined by the ratio of the central wavelength λo of the signal emitted by the source,

and the beam width ro. The beam is emitted in the range direction z and we study its propagation on the

range scale Lz which is comparable to the Rayleigh length

Lz ∼ r2
o/λo = ε−2λo � λo,

so that we can observe order one diffraction effects. To get efficient interaction of the fluctuations of the

boundary with the beam, we choose their correlation length to be similar to ro. The fluctuations have small

amplitude, which is scaled so that the net scattering effects become significant at range scale Lz.

We analyze the wave field p(t, x, y, z) in the random waveguide by decomposing it in waveguide modes

with random amplitudes. This is similar to the decomposition (3), except that the mode amplitudes are

now fields Aj(ω, x, z) that satisfy Helmholtz equations in the (x, z) plane. We show that their statistics

can be described by the solution of a system of stochastic paraxial equations driven by the same Brownian

motion field. We use this system to quantify explicitly the net scattering effects and calculate the following

important scales:

• The mode dependent scattering mean free paths Sj , for j = 1, . . . , N . This is as explained in section

1.1 the range scale on which the mean amplitude E[Aj ], and therefore its SNR, decays relative to its

fluctuations.

• The mode dependent decoherence length Xd,j , for j = 1, . . . , N . This is the cross-range scale over

which the random fluctuations of the mode amplitude become statistically uncorrelated,

E
[(
Aj(ω, x, ε

−2Z)− E
[
Aj(ω, x, ε

−2Z)
]) (

Aj(ω, x
′, ε−2Z)− E

[
Aj(ω, x

′, ε−2Z)
])]
≈ 0,

for |x′ − x| > ε−1Xd,j . The ε scaling of the cross-range is because the beam width is ro = ε−1λo, with

λo the order one length scale.
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• The mode dependent decoherence frequency Ωd,j , for j = 1, . . . , N . This is the frequency offset over

which the random fluctuations of the mode amplitude become statistically uncorrelated.

We find that all three scales Sj , Xd,j ,Ωd,j decrease monotonically with the mode index, meaning that the

low order modes are less affected by scattering at the random boundary. This is in agreement with physics,

and can be understood when associating the waveguide modes with plane waves striking the boundaries in

certain directions, and reflecting there. The first modes correspond to waves that strike the boundaries at

small grazing angles. They travel efficiently from the source at speed that is approximately co, and barely

see the random boundary. This is why they are least affected by the fluctuations. The high order modes

correspond to waves that strike the boundaries at almost normal incidence. They take a long path from the

source and travel slowly, at much smaller speed than co. They interact often with the random boundary,

which is why they are most affected by the fluctuations.

We quantify explicitly in [11] the dependence of Sj on the mode index. For example, we find that

S1 ∼ λoN4 � λo and SN ∼ λo/N � λo,

where ∼ denotes equal up to an order one constant, and the inequalities are for high frequency regimes, with

a large number N of propagating modes. Moreover,

Xd,j ∼ λo
√
Sj/S1, j = 1, . . . , N.

Thus, the first mode amplitudes can travel at very long ranges before they lose their coherence, and their

fluctuations decorrelate over cross-ranges that are similar to the beam width. The high order modes lose

coherence very fast, because their scattering mean free path is short, and their fluctuations also decorrelate

over cross-ranges that are much smaller than the beam width.

We use the theory of beam propagation in [11] to study time reversal and imaging in regimes of low SNR.

That is, at ranges exceeding the scattering mean free paths of the modes. Our analysis of time reversal shows

that super-resolution occurs, meaning that scattering at the random boundary improves the resolution of

the focused field in the vicinity of the source. An essential part of the resolution analysis is the assessment

of statistical stability (robustness) of the refocusing. We show that stability holds if the array has large

aperture and/or the emitted signal is broadband.

Array imaging is of course more difficult than time reversal. Scattering is a serious impediment, and

we need to use carefully the theory to obtain imaging methods that work in low SNR regimes. We show

in [11] that imaging can be carried out by backpropagating to search points in the imaging domain local

cross-correlations of the measurements of the wave field measured at the array. Local means that we cross-

correlate the data projected on one mode at a time, and for nearby frequencies. We work with one mode

at a time because the modes decorrelate due to scattering. Equivalently, using the plane wave analogy,

we cross-correlate the waves arriving at the array from the same direction. These waves experience similar

interactions with the random fluctuations, which is why their amplitudes are statistically correlated.

The imaging method in [11] is the generalization to waveguides of the Coherent Interferometric (CINT)

approach that we developed with Papanicolaou and Tsogka for open environments.

1.3 Electromagnetic waveguides

Here we summarize our results in [2] on the theory of electromagnetic wave propagation in waveguides filled

with a random medium with index of refraction

n(~x) =
co
c(~x)

= [1 + εν(~x)]
1/2

,

6
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Figure 4: Schematic of the rectangular waveguide used to analyze electromagnetic wave propagation.

defined by the ratio of the reference electromagnetic wave speed co and the perturbed speed c(~x). The

fluctuations are modeled by the mean zero random process ν, which is stationary in z, with z integrable

autocorrelation Rν . The waveguide has perfectly conducting walls and rectangular cross-section (0, L1) ×
(0, L2), as illustrated in Figure 4. This is to obtain an explicit quantification of the net scattering effects on

the wave field, the solution of Maxwell’s equations

~∇× ~H(ω, ~x) = ~J (ω,x)δ(z)− iω ~D(ω, ~x) (15)

~∇× ~E(ω, ~x) = iωµo ~H(ω, ~x) (16)

~∇ · ~H(ω, ~x) = 0 (17)

~∇ · ~D(ω, ~x) = %(ω, ~x), (18)

for ~x = (x, z), with x ∈ (0, L1) × (0, L2) and z ∈ R. Here ~E and ~D are the electric field and displacement,
~H is the magnetic field and µo is the magnetic permeability, assumed constant. The source excitation is

modeled by the current density ~J (ω,x)δ(z) localized at the origin of range, and %(ω, ~x) is the charge density.

Similar to the acoustic case (section 1.1), we analyze the wave field by decomposing it into modes,

solutions of Maxwell’s equation of the form

(E, Ez)(ω,x,±β)e±iβz and (H, Hz)(ω,x,±β)e±iβz.

The decomposition involves calculating the spectrum of a vector Laplacian, which has a countable set of

eigenvalues with square root defining the wavenumbers β. The eigenvalues are not simple, and the associated

mode degeneracy models the polarization effects.

To satisfy exactly the boundary conditions, at all orders of the asymptotic parameter ε, we work explicitly

with the cross-range components of the electric displacement

D(ω, ~x) =

N(ω)∑
j=1

Mj∑
s=1

ϕ
(s)
j (x)

(√
k

βj(ω)
δs1 +

√
βj(ω)

k
δs2

)(
A

(s)
j (ω, z)eiβj(ω)z +B

(s)
j (ω, z)e−iβj(ω)z

)
+ evanescent.

(19)

Then H = coU
⊥, where U is the rotated and scaled magnetic field, with decomposition

U(ω, ~x) =

N(ω)∑
j=1

Mj∑
s=1

ϕ
(s)
j (x)

(√
βj(ω)

k
δs1 +

√
k

βj(ω)
δs2

)(
A

(s)
j (ω, z)eiβj(ω)z −B(s)

j (ω, z)e−iβj(ω)z
)

+ evanescent.

(20)

7



0 10 20 30 40 50 60
10 3

10 2

10 1

100

Propagating mode j

1
/
µ

j
,q

 

 
1/µj,2
Sj
Equip. dist.

Figure 5: Scattering mean free paths (green curve) for electromagnetic waves in a random waveguide with
rectangular cross-section.

The longitudinal components Dz and Hz are determined by D and H, as follows from Maxwell’s equations.

The decomposition (19) is similar to that in acoustics (equation (3)), except that for each wavenumber βj ,

there are multiple eigenfunctions ϕ
(s)
j (x) of the vector Laplacian. The multiplicity is denoted by Mj and by

choosing L2/L1 irrational we can restrict it to 1 ≤Mj ≤ 2. This is in order to be able to carry a quantitative

analysis of the statistics of the mode amplitudes A
(s)
j and B

(s)
j .

Our results in [2] are:

• Rigorous analysis of the coupling between the forward, backward and evanescent waves. Proof that

when the autocorrelation Rν of the medium fluctuations is smooth in z, the forward scattering ap-

proximation holds.

• Complete characterization of the statistics of the mode amplitudes Aj at long ranges z = ε−2Z, with

Z & λo, where there are net scattering effects.

• Calculation of the scattering mean free paths of the modes, the range scales on which they randomize.

See Figure 5 and compare with the right plot in Figure 2 to note the similarity of the behavior of the

scattering mean free paths in acoustics.

• Proof that modes with different wavenumber are statistically decorrelated, as in the acoustic case. The

frequency decorrelation is of order ε2ωo, as well.

• Analysis of the transport of energy by the modes. This is the most challenging part of the project be-

cause it involves studying the z evolution of the Mj×Mj Hermitian matrices with entries E
[
A

(s)
j A

(s′)
j

]
for 1 ≤ s, s′ ≤Mj . In the acoustic case the energies where scalar. Here they are matrices due to the

mode degeneracy (polarization effects). We established rigorously in [2] under which conditions waves

reach the equipartition regime. It remains to understand how the off-diagonal entries of the Her-

mitian energy matrices decay, which is the mathematical manifestation of the wave depolarization.

Understanding this is crucial for imaging applications.

2 Imaging in random waveguides

Here we describe the results in [12, 1] for imaging in two dimensional acoustic waveguides. The results extend

to electromagnetic waveguides, once we understand how the waves depolarize (see last item above).
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Figure 6: Adaptive coherent imaging results for a point source at range 100λo from an array of receivers,
in waveguide with top random, pressure release boundary. Image with no mode filtering (left) and with
adaptive mode filtering (middle). The theoretical mode weights (red) agree with the numerical ones (blue)
in the right plot.

The study in [12] is concerned with the formulation and analysis of a novel coherent imaging approach

with adaptive mode filtering. It applies to waveguides with random boundaries where there is strong mode

dependence of the scattering mean free paths, as illustrated in the left plot of Figure 2. The algorithm

determines during the image formation which modes are incoherent (i.e., for which j we have z > ε−2Sj),
and filters them out. It images by time reversing the received wave, weighting the modes based on their

being coherent or not, and backpropagating them to the search domain in the ideal waveguide. We illustrate

in Figure 6 the results for the same waveguide considered in the left plot of Figure 2. The image on the

left is obtained with the standard approach, which uses all the recorded modes. It is not bad, as half of the

modes are coherent, but it is a bit noisy. The image in the middle is with optimal mode weighting. The

weights are shown in the right plot. Note how the numerically computed weights (blue line) match those

computed analytically (red). Note also that the algorithm estimates that only the first twenty modes are

coherent, which agrees with what the left plot in Figure 2 says: the source range 100λo . Sj for 1 ≤ j ≤ 20.

This demonstrates that our theory is quantitative.

The study in [1] applies to a much stronger scattering regime, where all the modes are incoherent, meaning

that the array is at range z > ε−2S1. It estimates the mode energies from the array measurements and uses

the transport theory summarized in section 1.1 to invert for the source density ρ and its range z. The mode

energies are defined by

Cj(τ) =
2πH

ε2

∫
dt ψ(Ht)

∣∣∣∣Dj

(
τ − t
ε2

)∣∣∣∣2 ≈ E[Cj(τ)], (21)

and we show that they are self-averaging when the bandwidth is large with respect to the decoherence

frequency of order ε2ωo. We assume in [1] that

ε2ωo � B � ωo, (22)

so that we can freeze the number of modes in the bandwidth to N(ωo). However, as we explain at the end

of this section, a larger bandwidth may be beneficial, in which case we can divide it in sub-bands satisfying

the relation (22). In definition (21) Dj(t) is the data projected on the j−th mode

Dj(t) =

∫ X

0

dx 1A(x)φj(x) p(t, x, z), (23)

where 1A(x) is the indicator function of the array aperture A, and ψ is a bump function (smooth, compactly

supported in an interval of order one). We anticipate the time to be of order ε−2τ in (21) because the range

9



0 10 20 30 400

0.2

0.4

0.6

0.8

1

Mode index

tra
ns

po
rt 

sp
ee

d 
in

 u
ni

ts
 o

f c
o

 

 

random medium
random boundary
ideal waveguide

Figure 7: Left: matrix of eigenvectors of Γ for a waveguide filled with a random medium. Middle: matrix
of eigenvectors of Γ for a waveguide with random top boundary. The autocorrelation of the fluctuations is
Gaussian in both cases and ` = 3λo. We display the absolute values of the entries. White indicates high
values and black nearly zero values. Right: the transport speed vr in the waveguide with random medium
(blue), with random boundary (red) and in ideal waveguide (green).

is z = ε−2Z, and scale t similarly in the argument of the data. This implies that we cross-correlate the

measurements at frequency offsets ε2h, with |h| ≤ H < ωo, where the theory tells us that the waves are

statistically correlated.

The mathematical model of Cj(τ) turns out to be

Cj(τ) ≈ ‖f‖
2

4B

N∑
q,l=1

Q2
jq

|ρ̂l [βq]|2

βlβq

∫
dh

2π
ψ̂

(
h

H

)[
e(ihB′+Γ)Z

]
ql
e−ihτ , (24)

with N ×N matrices B′ and Γ defined in section 1.1, and coupling matrix due to the array aperture

Qjq =

∫ X

0

dx 1A(x)φj(x)φq(x), j, q = 1, . . . , N. (25)

The unknowns in (24) are the scaled range Z of the source and the source density, which appears as the

absolute value of its Fourier coefficients.

The range Z can be determined from the arrival times of Cj(τ). It turns out that these can be estimated

using perturbation theory, because in forward scattering approximation regimes ihB′ may be treated as a

perturbation of Γ. Let Λj and uj denote the eigenvalues and orthonormal eigenvectors of the symmetric

matrix Γ, and assume that the eigenvalues are simple. They are necessarily non-positive, or else the energy

cannot be conserved, and we order them as 0 = Λ1 > . . .ΛN . Regular perturbation theory allows us to

rewrite (24) as

Cj(τ) ≈ H‖f‖2

4B

N∑
r=1

e−|Λr|Z Ψ (H(τ − Z/vr))
N∑

q,l=1

Q2
jq

|ρ̂l [βq]|2

βlβq

(
uru

T
r

)
ql
, (26)

with

vr = (uTr B′ur)−1 =

 N∑
j=1

β′ju
2
jr

−1

6= 1/β′r. (27)

Thus, we see a superposition of the bumps ψ traveling at transport speeds vr, which are different than the

speeds 1/β′r in ideal waveguides, unless ur are close to the basis vectors er. See Figure 7 for an illustration
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of the anomalous dispersion of the transport speed. Note in particular that the dominant entry in (26), for

r = 1, which doesn’t decay in range, is transported at the average speed

v1 =

 1

N

N∑
j=1

β′j

−1

, (28)

because u1 = (1, . . . , 1)T /
√
N . We explain in [1] how to use the anomalous dispersion and the transport

model to estimate the range z = ε−2Z of the source and also the matrix Γ. The latter requires some

knowledge of the model of the autocorrelation.

After estimating the range (and Γ), we can recover information about the source density ρ from the

vector M = (M1, . . . ,MN )T of the time integral of the intensities (24), where

Mj : =
4B

‖f‖2ψ̂(0)

∫ ∞
−∞

dτ Cj(τ), j = 1, . . . , N. (29)

Suppose the density is separable ρ(x, z) = ξ(x)ζ(z) and, let Q =
(
Q2
jq

)
to write

M ≈ Qdiag

(
|ζ̂(β1)|2

β1
, . . . ,

|ζ̂(βN )|2

βN

)
N∑
j=1

e−|Λj |Z

uTj
 |ξ̂1|2/β1

...

|ξ̂N |2/βN


uj , (30)

where N and the wavenumbers are evaluated at the central frequency ωo. There is not enough data to find

both ξ and ζ. Typically in imaging the range is estimated from travel time. In our case the travel time

resolution is O(ε−2H−1), so we cannot estimate the range beyond the scale ε−2Z. We map all the range

density at the center of the source ζ(z)  δ(z) and seek to estimate the cross-range density ξ(x). At best

we can only get (|ξ̂j |)1≤j≤N from which we can estimate the support of ξ(x), as explained in [1].

To find (|ξ̂j |)1≤j≤N from (30) means inverting the matrix exponential. This is unstable (expected ill-

posedness of any transport based inversion), so we regularize to obtain

(
|ξ̂1|2/β1, . . . |ξ̂N |2/βN

)T ?
≈

J∑
j=1

e|Λj |Z
(
uTj BQ−1M

)
uj , (31)

for J chosen so that Z � 1/|Λj | for j > J . We analyze this result in [1] and show that (31) approximates

the first J components of the left hand-side if J is not too low (i.e., the range is not too large). This is

because the matrix of eigenvectors has a nearly vanishing upper right corner (see the plots in Figure 7 and

the analysis in [1]). However, for larger and larger range (31) does not approximate the left hand side. In

particular, when Z � 1/|Λ2|, we note from (30) that

M ≈

 1

N

N∑
j=1

|ξj |2

βj

Q(1, . . . , 1)T , (32)

so all we can get from the inversion is the average of the absolute values of the Fourier coefficients. The scale

Leq =
1

|Λ2|
(33)

is called the equipartition distance, because it is the range at which the energy is uniformly distributed over

the modes by scattering, no matter the initial condition. Cross-range estimation from narrowband data is
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impossible in the equipartition regime. See figure 2 for a comparison between the equipartition distance (red

line) and the scattering mean free paths (blue curve). Note how Leq exceeds S1 by an order of magnitude

in the waveguide filled with random media (right plot), indicating that transport based inversion is useful.

When the random boundary effects dominate (left plot) we have Leq ≈ S1, meaning that once all the

modes become incoherent, they are also in equipartition. Transport based inversion is not useful in these

waveguides, at least not for narrowband data.

Broadband data can improve the source estimation even when the waves are in equipartition, as we show

in [1]. This is because when the frequency changes, both the number N(ω) and the wavenumbers βj (weights

in (32)) change, thus allowing us to get some information about the cross-range profile of the source.

In any case, the transport based inversion cannot be expected to give very detailed information about

the source density, because it can only give the absolute value of the Fourier coefficients of its cross-range

profile. In the electromagnetic case we expect an improvement, due to polarization (i.e., mode degeneracy).

There we deal with Hermitian energy matrices whose off-diagonal entries bring phase information about the

Fourier coefficients of the unknown source density.

3 Pulse propagation in time dependent random media

Here we describe the results in [14], which are concerned with the evolution of a pulse while traveling in a

time dependent random medium. As far as we know, this is the first study that takes rigorously into account

rapid time changes.

The analysis is for acoustic waves in layered media, modeled by the first order system

%∂tu(t, z) + ∂zp(t, z) = f(t)δ(z),

1

K(t, z)
∂tp(t, z) + ∂zu(t, z) = 0, (34)

where % is the mass density assumed constant, K is the bulk modulus, p is the pressure, u is the vertical

displacement velocity, and f is the pulse emitted by the source at z = 0. The wave speed c(t, z) =
√
K(t, z)/%

in the random medium is modeled by

1

c(t, z)
=

{ [
1 + σν

(
t
T ,

z
`

)]
/co, z > 0,

1/co otherwise,
(35)

where ν is a mean zero stationary random process in both arguments, ` is the correlation length, T is the

correlation time and σ quantifies the amplitude of the fluctuations. The analysis is in the following scaling

regime defined using the reference range scale of propagation L. We take

ε2 = Tf/(L/co)� 1, σ = ε, (36)

where T
f

is the duration of the pulse, so the wavelength λo is of order ε2L. The correlation length ` and

time T are defined by

T = εα−2Tf , ` = εβL, (37)

where we vary α and β to distinguish between two interesting regimes where the random medium plays a

role: Slowly changing media, where α < 2 and β = 2 and rapidly changing media, where α = 2 and β ≤ 2.

The main results are:

• Derived a Volterra integral equation for the wave front which describes the evolution of the pulse shape.
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• Obtained a new averaging result for this equation in coordinates centered at a random time, to prove

that the pulse shape is deterministic.

• Described in detail the pulse deformation and showed that rapid time variations in the medium may

feed energy into the pulse, and thus prevent fading. For slow time changes the pulse behaves as in time

independent media. It broadens and fades as described by the well known O’Doherty-Anstey theory.

4 SAR imaging

Here we summarize the work in [8, 7], which aims to introduce and analyze from first principles a syn-

thetic aperture radar (SAR) imaging methodology that can be combined with target motion estimation and

autofocus. This involves two main steps:

1. The first step is a segmentation of the data into small, properly calibrated sub-apertures. Such aper-

tures are essential in motion estimation, where we wish to approximate the target motion as a uniform

translation over small time intervals defining the sub-aperture. Small apertures are also important in

image formation and other data processing, because they allow linearization of phases in the slow time,

which means that calculations can be done with the fast Fourier transform.

2. The second step is data processing for extracting target motion and platform trajectory perturbations.

We have shown in our previous work [6] with analysis and numerical simulations how this can be done

in the phase space, using Wigner transforms and ambiguity functions. The phase space approach works for

a single target or for groups of targets that are in similar motion (either all of them are stationary or they

move at the same speed). Moreover, it can only determine the relative motion of the targets with respect to

the platform. That is to say, the phase space approach by itself cannot handle complex scenes and it does

not decouple motion estimation from autofocus.

To decouple motion estimation from autofocus, we need complex scenes. To deal with them, we have

introduced a data filtering approach that seeks to divide the SAR data into subsets corresponding to targets

that are stationary and/or in similar motion. Then, the phase space approach can be used separately on

these subsets to carry out the autofocus and to estimate target motion. The data filters are based on travel

time transformations (delays) applied to the pulse compressed SAR data. The filters are extensions of ideas

in our paper [9]. We have also shown that travel time transformations can also be used to estimate target

velocities in a two step, one dimensional optimization procedure, that determines separately the velocity in

the range direction and in the cross-range direction.

The separation of the pulse compressed SAR echoes from stationary targets and moving targets can also

be done with the robust principal analysis (PCA) approach. This requires however appropriate windowing

of the data. A careful theoretical and numerical study of filtering with robust PCA is in [8].

5 Work in progress

We are currently working with Ilker Kocyigit (AFOSR supported postdoc) on understanding sparsity based

optimization imaging methods in random media, and with Liem Dinh Nguyen (AFOSR supported postdoc)

on imaging with electromagnetic waves in terminating waveguides. Moreover, we study with Derek Wood

(graduate student, not supported by AFOSR) wave propagation in turning waveguides.
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II. Other activities and findings

• In [13] we studied the Dirichlet to Neumann map of composite media with highly conducting inclusions

packed at high volume. We presented a constructive method of approximation which can be used in

numerics to obtain efficient preconditioners for domain decomposition methods.

• In [10] we introduced a novel inversion approach for parabolic equations, based on model reduction.

The equation arises in controlled source electromagnetic inversion. We analyzed theoretically the

algorithm and assesed its performance using numerical simulations.

• The solicited article [5] is a review of imaging in random media which will appear in the Handbook of

Mathematical Methods in Imaging published by Springer.

• The research in Alonso, R., and Lods, B.: Boltzmann model for viscoelastic particles Asymptotic

behavior, pointwise lower bounds and regularity., accepted for publication in Comm. Math. Phys.

(2014), was done while Ricardo Alonso was an AFOSR supported postdoc.

• The following research of Sebastian Acosta was done while he was an (AFOSR supported student) :

A control approach to recover the wave speed (conformal factor) from one measurement. Submitted

2014. Preprint arXiv:1401.6737

Recovery of the absorption coefficient in radiative transport from a single measurement. Submitted

2014. Preprint arXiv:1308.4655v2.

Time reversal for radiative transport with applications to inverse and control problems. Inverse Prob-

lems 29: 085014, 2013.

III. Broader impact

Students advised:

1. Wang Yingpei, Rice University PhD 2014. Thesis topic: Imaging in high contrast media. Now at

Oracle, San Francisco.

2. Sebastian Acosta, Rice University PhD 2014. Project: Inverse source problems for time-dependent

radiative transport in scattering media. Now postdoc at Baylor College of Medicine, Houston.

3. Derek Wood, University of Michigan, 3rd year PhD student. Working on wave propagation in turning

random waveguides.

Postdocs advised:

1. Ricardo Alonso, PhD 2008, Mathematics, UT Austin. Supported by AFOSR. Currently assistant

professor at Pontificia Universidade Católica Rio de Janeiro, Brazil.

2. Thomas Callaghan, PhD 2010, Institute of Computational Mathematics and Engineering (ICME),

Stanford University. NSF VIGRE postdoc. Project: SAR imaging with motion estimation and auto-

focus. Currently quantitative researcher at Quantres, Bahamas.

3. 2013-2017 Ilker Kocyigit at University of Michigan, PhD 2013 in Mathematics from University of

Washington, Seattle. Supported by AFOSR and working on optimization based imaging in random

media.

4. 2013-2017 Liem Nguyen at University of Michigan, PhD 2013 in Mathematics from Ecole Polytechnique.

Supported by AFOSR and working on imaging in terminating waveguides.
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Publications references [1-8] and [10-14].

Invited presentations

1. Imaging with waves in complex environments, PIMS/UBC/IAMS Distinguished Colloquium, Vancou-

ver, BC, October 31, 2014.

2. Imaging in random media (plenary lecture), Conference in Inverse Problems and Spectral Theory, Oct

17-19, 2014, Texas A&M University, College Station, TX.

3. Imaging with waves in complex environments (plenary lecture), Continuum Models Discrete Systems -

13 Conference, Salt Lake City, Utah, July 21-25, 2014.

4. Imaging with waves in complex environments (plenary lecture), workshop on Theoretical and Applied

Computational Inverse Problems, Schrödinger Institute, Vienna, Austria, May 5-16, 2014.

5. Imaging with waves in complex environments, Applied Mathematics Colloquium, Harvard University,

Cambridge, April 7, 2014.

6. Electromagnetic wave propagation in random waveguides, Applied Mathematics Colloquium, Stanford

University, March 5, 2014.

7. A quantitative study of imaging in random waveguides, CSP Seminar, Electrical Engineering Depart-

ment, University of Michigan, February 20, 2014.

8. The Dirichlet to Neumann map of high contrast media, Applied Interdisciplinary Mathematics seminar,

Nov. 1, 2013, Department of Mathematics, University of Michigan, Ann Arbor.

9. The Dirichlet to Neumann map of high contrast media, colloquium Oct 24, 2013, Department of Math-

ematics, University of Illinois, Urbana Champaign.

10. A quantitative study of imaging in random waveguides (plenary lecture) International conference on

novel directions in inverse scattering, July 29 - August 2, 2013, University of Delaware.

11. An asymptotic study of the Dirichlet to Neumann map of high contrast conductive media, colloquium

Jun 14, 2013, Ecole Normale Superieure, Paris.

12. An asymptotic study of the Dirichlet to Neumann map of high contrast conductive media (plenary

lecture), Conference on Applied Analysis for the matherial sciences, May 27-31, 2013, CIRM Lumini,

Marseille.

13. Paraxial coupling of waves in 3-D random waveguides (plenary lecture), Recent developments in ap-

plied Mathematics, Conference in honor of George Papanicolaou’s 70th birthday, January 24-27, 2013,

Stanford, CA.

14. Paraxial coupling of waves in 3-D random waveguides (plenary lecture), Workshop on Theory and

Applications of Stochastic PDE’s, January 14-18, 2013, IMA, Minneapolis.

Editorial positions 2012-2013:

1. Editorial board SIAM Journal on Multiscale Modeling and Simulations.

2. Editorial board SIAM Journal on Uncertainty Quantification.

3. International Advisory Panel of the Journal Inverse Problems

National committees:

1. Elected member of the SIAM Council, 2014-2017.

2. Member of SIAM Coordinating Committee of Joint Mathematics Meeting (2014-2017).

3. Member of the SIAM Imaging Science best paper award committee, 2013.

4. Elected member at large of the Inverse Problems International Association.
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Advisory boards:

1. International Scientific Advisory Board of the National Academy of Finland, for the Center of Excel-

lence in Inverse Problems Research, 2012-2017.

2. Member of the Scientific Review Panel for the Pacific Institute for the Mathematical Sciences, UBC,

Vancouver, Canada.

Honors and awards:

1. 2015 Simons Fellow in Mathematics.

2. Peter Field Collegiate Chair Professor in the Department of Mathematics, University of Michigan, Ann

Arbor. Starting date: September 1, 2013.
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